Reductive homogeneous pseudo-Riemannian manifolds
نویسندگان
چکیده
منابع مشابه
Flat Homogeneous Pseudo-Riemannian Manifolds
The complete homogeneous pseudo-Riemannian manifolds of constant non-zero curvature were classified up to isometry in 1961 [1]. In the same year, a structure theory [2] was developed for complete fiat homogeneous pseudo-Riemannian manifolds. Here that structure theory is sharpened to a classification. This completes the classification of complete homogeneous pseudo-Riemannian manifolds of arbit...
متن کاملComplete k-Curvature Homogeneous Pseudo-Riemannian Manifolds
For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.
متن کاملCurvature Homogeneous Pseudo-riemannian Manifolds Which Are Not Locally Homogeneous
We construct a family of balanced signature pseudo-Riemannian manifolds, which arise as hypersurfaces in flat space, that are curvature homogeneous, that are modeled on a symmetric space, and that are not locally homogeneous.
متن کاملIsoclinic Spheres and Flat Homogeneous Pseudo - Riemannian Manifolds
The structure theory ([3], [8]) for complete flat homogeneous pseudo-riemannian manifolds reduces the classification to the solution of some systems of quadratic equations. There is no general theory for that, but new solutions are found here by essentially the same construction as that used for isoclinic spheres in Grassmann manifolds [4]. It is interesting to speculate on a possible direct ge...
متن کاملCurvature Homogeneous Spacelike Jordan Osserman Pseudo-riemannian Manifolds
Let s ≥ 2. We construct Ricci flat pseudo-Riemannian manifolds of signature (2s, s) which are not locally homogeneous but whose curvature tensors never the less exhibit a number of important symmetry properties. They are curvature homogeneous; their curvature tensor is modeled on that of a local symmetric space. They are spacelike Jordan Osserman with a Jacobi operator which is nilpotent of ord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monatshefte f�r Mathematik
سال: 1997
ISSN: 0026-9255,1436-5081
DOI: 10.1007/bf01320735